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Abstract
For time-periodic perturbations of the wave equation in Rt × R

n
x given by a

potential q(t, x), we obtain an upper bound of the number of the resonances
{zj ∈ C : |zj | � δ > 0}. We establish for m ∈ N large enough a trace formula
relating the iterations of the monodromy operator U(mT, 0), T > 0, and the
sum

∑
j zm

j of all resonances counted with their multiplicities.

PACS numbers: 02.30.Sa, 02.30.Jr, 03.65.Nk
Mathematics Subject Classification: 35P25, 35B34

1. Introduction

The purpose of this paper is to study the resonances of the wave equation with time-dependent
potentials. Consider the Cauchy problem{

∂2
t u − �u + q(t, x)u = 0, (t, x) ∈ R × R

n,

u(s, x) = f0(x), ut (s, x) = f1(x), x ∈ R
n,

(1.1)

where the potential q(t, x) ∈ C∞(
Rt × R

n
x

)
, n � 3, n odd, satisfies the conditions:

(H1) there exists R > 0 such that q(t, x) = 0 for |x| � R, ∀t ∈ R,
(H2) q(t + T , x) = q(t, x), ∀(t, x) ∈ R

n+1 with T > 0.

The solution of (1.1) is given by the propagator

U(t, s) : H0 � (f0, f1) −→ U(t, s)(f0, f1) = (u(t, x), ut (t, x)) ∈ H0,

where H0 is the energy space H0 = HD(Rn) ⊕ L2(Rn) and HD(Rn) is the closure of C∞
0 (Rn)

with respect to the norm

‖f ‖HD
=

(∫
|∇xf |2 dx

)1/2

.

0305-4470/04/409439+11$30.00 © 2004 IOP Publishing Ltd Printed in the UK 9439

http://stacks.iop.org/ja/37/9439


9440 J-F Bony and V Petkov

We refer to chapter V, [13], for the properties of U(t, s) and throughout the paper we will use
freely the notation of [13].

Let U0(t) = eitG0 be the unitary group in H0 related to the Cauchy problem (1.1) with
q = 0 and let P

ρ
+ (resp. P

ρ
−) denote the orthogonal projection on the orthogonal complement

of the spaces D
ρ
+ (resp. D

ρ
−) introduced by Lax and Phillips (see [8, 13]) and defined by

D
ρ
± = {f ∈ H0 : U0(t)f = 0 for |x| � ±t + ρ,±t � 0}, ρ � R.

To define the resonances, we will use the operator

Zρ(T ) = P ρ
+ U(T , 0)P

ρ
−.

For non-trapping perturbations the spectrum of Zρ(T ) is formed by eigenvalues with finite
multiplicity and for m ∈ N large enough the operator Zρ(mT ) is compact (see [1, 5, 13]).
Moreover, the eigenvalues and their multiplicity are independent of ρ � R (see [5, 13]). Let
P denote the operator related to the problem (1.1). We define the resonances following the
approach of Lax–Phillips [8] for stationary perturbations and that of Cooper–Strauss [5] for
time-periodic ones.

Definition 1. We say that z ∈ C\{0} is a resonance for P if z ∈ σpp Zρ(T ).

Notice that eiσT is an eigenvalue of Zρ(T ) if and only if there exists an outgoing solution
u(t, x) of the problem (1.1) with non-vanishing initial data such that e−iσT u(t, x) is periodic
with period T. We refer to [13] for the definition of an outgoing solution (see also [5]) as
well as for the proof of the above equivalence. The second definition presents a more precise
description of the existence of outgoing modes with complex frequencies known in the physical
literature.

We denote by Res P the set of resonances of P. In the following we write Z(T ), P±
instead of Zρ(T ), P

ρ
± if the dependence on ρ is not important and we set

U(T ) = U(T , 0), Z0(T ) = P+U0(T )P−.

In section 3 we obtain an upper bound of the number of the resonances

Nδ = #{z ∈ Res P : |z| � δ} � Cεδ
−ε, 0 < ε � 1/2

which generalizes the known results for time-independent perturbations (see [11, 21, 14, 19]
and the papers cited there). To the best of our knowledge this is the first upper bound for Nδ for
time-periodic perturbations. Next, using the bound of the resonances, we obtain a trace formula
involving the resonances. More precisely, given a function g(z) = zmh(z), holomorphic in a
disk containing the resonances, we establish a trace formula involving g(U(T )) and the series∑

zj ∈Res P

g(zj )

in the spirit of trace formulae obtained for stationary perturbations in [2, 11, 15, 22, 16] (see
section 4). In particular, for h(z) = 1 we have the following

Theorem 1. Let χ ∈ C∞
0 (B(0, r1); [0, 1]) be such that χ = 1 for |x| � R + T and let

χ(U(T ) − U0(T )) = (U(T ) − U0(T ))χ = U(T ) − U0(T ). (1.2)

Let the projectors P± and the number k ∈ N be fixed so that

P+U0(jT )P− = 0, j � k, P±χ = χP± = χ. (1.3)
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Then for m � 2k large enough we have

tr((U(kT ) − U0(kT ))U(mT − 2kT )(U(kT ) − U0(kT ))) =
∑

zj ∈Res P

zm
j , (1.4)

where the summation is over all resonances counted with their multiplicities.

Remarks.

(1) The equality (1.2) follows from the finite speed of propagation and the representation

U(T ) = U0(T ) −
∫ T

0
U0(T − s)Q(s)U(s, 0) ds,

where

Q(s) =
(

0 0
q(s, x) 0

)
.

(2) It is clear that we can choose ψ ∈ C∞
0 (Rn) with the property ψ = 1 for |x| � r1 + kT so

that

(U(kT ) − U0(kT ))(1 − ψ) = 0

which is a consequence of

χU0(jT )(1 − ψ) = 0, j = 0, 1, . . . , k − 1

(see equality (4.1)). Thus in the trace formula (1.4) on the right and on the left of
U(mT − 2kT ) we may put the cut-off operator 	 = (U(kT ) − U0(kT ))ψ acting as a
multiplication operator.

Corollary 1. Under the assumptions of theorem 1 the existence of a sequence mν ∈ N,

mν ↗ ∞, such that

|tr((U(kT )− U0(kT ))U(mνT )(U(kT )− U0(kT )))| −→ ∞ as mν ↗ ∞
is equivalent to

Res P ∩ {z ∈ C : |z| > 1} �= ∅.

The above result says that the existence of resonances zj , |zj | > 1, associated with
solutions whose local energy blows up is connected to the behaviour as m → ∞ of the trace
of a cut-off iteration 	U(mT )	. It is clear that we can choose b > 0 so that the projectors
P b

± satisfy P b
±	 = 	P b

± = 	. Then we obtain the property

Res P ∩ {z ∈ C : |z| > 1} �= ∅ ⇔ limm→∞|tr(Zb(mT ))| = +∞.

The result of corollary 1 seems quite natural for time-periodic perturbations. For example, the
existence of intervals of instability for the Hill equation

y ′′(t) + p(t)y(t) + λy(t) = 0 (1.5)

with time-periodic p(t) and λ ∈ R is determined by the trace

tr M(λ) = y1(T , λ) + y ′
2(T , λ)

of the Wronskian M(λ) given by(
y(T )

y ′(T )

)
= M(λ)

(
y(0)

y ′(0)

)
.
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Here y1(t, λ) (resp. y2(t, λ)) is the solution of (1.5) with y1(0, λ) = 1, y ′
1(0, λ) = 0

(resp. y2(0, λ) = 0, y ′
2(0, λ) = 1). The intervals of instability are described by the set

{λ : |tr M(λ)| > 2} (see, for instance, [7]). Moreover, if λ0 lies in an interval of instability,
there exists an eigenvalue µ(λ0), |µ(λ0)| > 1, of M(λ0), and we have

lim
m→∞ |tr Mm(λ0)| = ∞.

This phenomenon appears for the so-called parametric resonances [6] and if λ = l π2

T 2 with
suitable l ∈ N there exist unbounded solutions.

For stationary perturbations, given by a potential V (x), we have always resonances
and some lower bounds for the function counting the number of the resonances have been
established (see [4, 3] and the references cited there). In contrast to the stationary case,
for time-periodic perturbations, it is possible to construct a potential q(t, x) such that the
corresponding operator P has no resonances z �= 0. In section 5 we treat this problem.

2. Meromorphic continuation of the resolvent (U (T ) − z)−1

In the following H will denote the space H0. Given a resonance z0 ∈ Res P , consider the
projection

πz0,Z = 1

2π i

∫
γ0

(z − Z(T ))−1 dz,

where γ0 = {z ∈ C : z = z0 + ε eiϕ, 0 � ϕ < 2π} and ε > 0 is sufficiently small. The space
πz0,Z(H) has a finite dimension, independent of ρ, and we define the multiplicity of z0 as

m(z0) = rank πz0,Z(H).

Let C0 > 0 be a constant such that ‖U(T )‖ � C0 and let the cut-off function χ , the projectors
P± and the integer k ∈ N be fixed as in theorem 1.

Introduce a number a0 > r1 + kT and let HR+a0 be the space of the elements of H which
vanish for |x| � R + a0. Next define the space Hloc as the space of functions u for which
ψu ∈ H for each ψ ∈ C∞

0 (Rn) equal to 1 in a neighbourhood of B(0, R + a0). Then we have
the following

Proposition 1. The operator (U(T ) − z)−1 : HR+a0 −→ Hloc admits a meromorphic
continuation from |z| > C0 to C. The poles of this continuation coincide with the resonances
Res P and the geometric multiplicities are the same. Moreover, for every z0 ∈ Res P we have

πz0,Z(H) = πz0,Z

(
HR+a0

) = πz0,U

(
HR+a0

)
, (2.1)

where

πz0,U = 1

2π i

∫
γ0

(z − U(T ))−1 dz : HR+a0 −→ Hloc.

Remark. The above result is similar to proposition 3.6 in [14], where the resonances for
compactly supported perturbations are defined by the method of complex scaling.

Proof. For |z| > C0 we have χ(Z(T ) − z)−1χ = χ(U(T ) − z)−1χ and the poles of
χ(U(T ) − z)−1χ are included in the set Res P . To prove the inverse, note that

W(T ) = Z0(T ) − Z(T ) = P+(U0(T ) − U(T ))P− = χ(U0(T ) − U(T ))χ = χV (T )χ,

(2.2)
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where V (T ) = U0(T ) − U(T ). Next, we have

(Z(T ) − z)−1 = (Z(T ) − z)−1(Z0(T ) − Z(T ))(Z0(T ) − z)−1 + (Z0(T ) − z)−1

= (Z0(T ) − z)−1(Z0(T ) − Z(T ))(Z(T ) − z)−1(Z0(T ) − Z(T ))(Z0(T ) − z)−1

+ (Z0(T ) − z)−1(Z0(T ) − Z(T ))(Z0(T ) − z)−1 + (Z0(T ) − z)−1

= (Z0(T ) − z)−1χV (T )χ(U(T ) − z)−1χV (T )χ(Z0(T ) − z)−1

+ (Z0(T ) − z)−1χV (T )χ(Z0(T ) − z)−1 + (Z0(T ) − z)−1. (2.3)

The resolvent (Z0(T ) − z)−1 is holomorphic in C\{0} and (2.3) implies that the eigenvalues
of Z(T ) are inside the poles of χ(U(T ) − z)−1χ . Thus the resonances coincide with the
poles of the meromorphic continuation of χ(U(T ) − z)−1χ and it follows immediately that
the geometric multiplicities are the same.

To establish (2.1), note that according to (2.3), we have

πz0,Z = 1

2π i

∫
γ0

(z − Z(T ))−1χV (T )χ(Z0(T ) − z)−1 dz.

Given f ∈ H, we write

χV (T )χ(Z0(T ) − z)−1f =
N0∑
j=0

(z − z0)
jχfj,0 + Of ((z − z0)

N0+1), z ∈ γ0

and we obtain for N0 � 1

πz0,Zf = 1

2π i

∫
γ0

(z − Z(T ))−1
N0∑
j=0

(z − z0)
jχfj,0 dz.

On the other hand, as in the paper of Sjöstrand and Zworski [14], we get

(z − z0)
j − (Z(T ) − z0)

j

= (z − Z(T ))[(z − z0)
j−1 + (z − z0)

j−2(z − Z(T )) + · · · + (z − Z(T ))j−1].

For j � 1 we replace (z − z0)
j by (Z(T ) − z0)

j and we deduce

πz0,Zf = πz0,Z


 N0∑

j=0

(Z(T ) − z0)
j (χfj,0)


 .

Next we exploit the equality

Z(jT ) − Z0(jT ) = −
j−1∑
ν=0

Z0(νT )(Z0(T ) − Z(T ))Z((j − ν − 1)T ).

Observing that Z0(νT ) = 0 for ν � k, we deduce

Z(jT )χ = Z0(jT )χ −
k−1∑
ν=0

Z0(νT )χV (T )χZ((j − ν − 1)T )χ.

This implies

Z(jT )χ = P+�, ∀j ∈ N,

where � ∈ C∞
0 (B(0, r1 + kT ); [0, 1]) is such that (1 − �)U0(jT )χ = 0 for 0 � j � k − 1.

Since

πz0,ZP+� = P+πz0,Z� = πz0,Z�,
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we conclude that

πz0,Z(H) = πz0,Z(�H) ⊂ πz0,Z

(
HR+a0

)
.

Finally, if P
ρ
−� = � we have

πz0,Z(H) = πz0,U (�H) +
1

2π i

(
1 − P ρ

+

) ∫
γ0

(z − U(T ))−1� dz : HR+a0 −→ Hloc.

The term involving
(
1 − P

ρ
+

)
is independent of the choice of P

ρ
+ , provided P

ρ
−� = � and it

vanishes on every compact set. This completes the proof. �

3. Upper bound of the number of resonances

In this section, we give a upper bound of the number of resonances lying in the disc

{z ∈ C : |z| � δ}, δ > 0.

We will prove the following

Theorem 2. Suppose the assumptions (H1), (H2) are fulfilled. Then the number of the
resonances z ∈ Res P, |z| > 1, is finite and for each ε > 0 there exists a constant Cε > 0
such that for every 0 < δ � 1 we have

#{z ∈ Res P : |z| � δ} � Cεδ
−ε . (3.1)

Remarks.

(1) For stationary potentials this result has been obtained by Melrose [11] (see the estimate
(44)).

(2) The above bound is natural for independent on time perturbations. Indeed, in this case,
Melrose [11], Zworski [21], Sjöstrand and Zworski [14] and Vodev [19] have proved that

#Res P ∩ {σ ∈ C : |σ | � r} � Crn. (3.2)

Moreover, if P is non-trapping, Vainberg [17] in the classical case and Martinez [10] in
the semi-classical framework have shown that for each N ∈ N we have

#Res P ∩ {σ ∈ C : |Im σ | � N ln(|σ |)} < ∞. (3.3)

This implies

#Res P ∩ {σ ∈ C : |Im σ | � r} � #Res P ∩ {σ ∈ C : N ln(|σ |) � |Im σ | � r} + CN

� #Res P ∩ {σ ∈ C : |σ | � er/N } + CN � C ′
N ern/N . (3.4)

Now, fixing T > 0 and setting z = eiσT , we obtain the estimate (3.1) with ε = n
T N

.

Proof. We will exploit the method developed by Melrose [11, 12] for perturbations independent
of time (see also Zworski [21] and Vodev [19]). To prove the theorem, it is sufficient to show
that there exists N ∈ N such that for each ε > 0, the eigenvalues of the operator Z(NT )

satisfy for all 0 < δ � 1 the estimate

#{z ∈ C : z ∈ σpp(Z(NT )), |z| � δ} � Cεδ
−ε. (3.5)

Given a compact operator S, we denote by µj(S), j = 1, 2, . . . , the characteristic values
of S which form a non-increasing sequence of the eigenvalues of (S∗S)1/2 counted with their
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multiplicity. Let χ ∈ C∞
0 (Rn) and k ∈ N be fixed as in theorem 1 so that Z0(kT ) = 0. For

M ∈ N, we have

Z((2k + M)T ) = Z(kT )Z(MT )Z(kT )

= (Z(kT ) − Z0(kT ))Z(MT )(Z(kT ) − Z0(kT ))

= P+(U(kT ) − U0(kT ))U(MT )(U(kT ) − U0(kT ))P−
= P+(U(kT ) − U0(kT ))χU(MT )χ(U(kT ) − U0(kT ))P−. (3.6)

Since the perturbation of P is given by a potential, the results for the propagation of
singularities imply that the operator χU(MT )χ is regularizing for M ∈ N large enough (see
[5, 1, 13, 18]). Let � ⊂⊂ R

2n be an open hypercube, with suppχ ⊂ �, and let �� be the
Laplacian in � with Dirichlet boundary condition. It is well known (see for instance, [21, 19])
that for all m ∈ N, there exists Cm > 0 such that

µj((I − ��)−m) � Cmj−2m/n, ∀j ∈ N.

Consequently, using (3.6) and the inequalities

µj(AB) � µj(A)‖B‖, µj (AB) � µj(B)‖A‖,
we get, for m ∈ N,

µj(Z((2k + M)T )) � Cµj(χU(MT )χ)

� Cµj((I − ��)−m(I − ��)mχU(MT )χ)

� Cµj((I − ��)−m)‖(I − ��)mχU(MT )χ‖
� Cmj−2m/n (3.7)

with a new constant Cm > 0.
We choose N = 2k + M, 2m > n and we order the eigenvalues

λ1, λ2, . . . , λp, . . .

of Z(NT ) counted with their multiplicities by decreasing modulus. Then

|λp|p �
p∏

j=1

|λj | �
p∏

j=1

µj(Z(NT )) � (Ck)
p(p!)−k,

where k ∈ N can be taken as large as we wish. Thus with a constant C ′
k , we get

|λp| � Ck(p!)−
k
p � C ′

kp
−k.

Now for the eigenvalues λ1, . . . , λp with modulus greater than δ > 0 we deduce

p � C ′′
k δ− 1

k

and taking k = 1
ε
, we complete the proof. �

4. Trace formula

In this section we prove theorem 1. Recall that χ ∈ C∞
0 (Rn), the projectors P± and k ∈ N are

fixed so that (1.2) and (1.3) hold. First notice that

U(kT ) − U0(kT ) =
k−1∑
j=0

U(jT )(U(T ) − U0(T ))U0((k − j − 1)T )

= P−(U(kT ) − U0(kT )) = (U(kT ) − U0(kT ))P+. (4.1)
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The second and the third equalities follow from the fact that

(I − P−)U(jT )χ = χU0(jT )(I − P+) = 0, j = 0, . . . , k − 1.

The operator

P+U(mT − 2kT )P−
is trace class for m sufficiently large and the cyclicity of the trace implies

tr((U(kT ) − U0(kT ))U(mT − 2kT )(U(kT ) − U0(kT )))

= tr(P−(U(kT ) − U0(kT ))P+U(mT − 2kT )P−(U(kT ) − U0(kT ))P+)

= tr(P+(U(kT ) − U0(kT ))P−P+U(mT − 2kT )P−P+(U(kT ) − U0(kT ))P−)

= tr(P+U(kT )P−P+U(mT − 2kT )P−P+(U(kT )P−)

= tr(P+U(mT )P−) = tr(Z(mT )).

Applying Lidsii theorem for the trace of Z(mT ), we complete the proof since by theorem 2
we have∣∣∣∣∣∣
∑

j

zm
j

∣∣∣∣∣∣ �
∞∑

p=1

∑
C

p+1 <|zj |� C
p

∣∣zm
j

∣∣ � Cε

∞∑
p=1

(
C

p

)m−ε

� Cm, 0 < ε � 1/2, m � 2.

It is clear that corollary 1 follows from the following

Lemma 1. Let

Am =
∑

|zj |�1

zm
j , Bm =

∑
|zj |>1

zm
j , m ∈ N.

Then

|Am| � C0, ∀m � 1 + ε0 > 1.

Moreover, if {z ∈ Res P : |z| > 1} �= ∅, then there exists a sequence mν ↗ ∞,mν ∈ N, such
that

lim
mν→∞

∣∣Bmν

∣∣ = ∞.

Proof. Let m − ε > 1, ε > 0. Using the estimate

#{zj ∈ Res P : |zj | � δ} � Cεδ
−ε,

we obtain

|Am| �
∞∑

k=1

∑
1

k+1 <|zj |� 1
k

|zj |m � Cε

∞∑
k=1

(
1

k

)m (
1

k + 1

)−ε

� C ′
ε .

To deal with the sum Bm, introduce

µ = max{|zj | : zj ∈ Res P, |zj | > 1}.
Since we have a finite number of resonances zj with |zj | > 1, let

zj = µ eiϕj , j = 1, . . . , p, ϕν �= ϕj (mod 2π), ν �= j.

It is sufficient to show that for a suitable sequence mν ↗ ∞ we have

lim
mν→∞

∣∣∣∣∣∣
p∑

j=1

cj eimνϕj

∣∣∣∣∣∣ � ε0 > 0,

where cj ∈ N is the multiplicity of the resonance zj , j = 1, . . . , p.
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Put aj = eiϕj , j = 1, . . . , p and assume that

lim
m→∞

p∑
j=1

cja
m
j = 0

for some integers cj ∈ N, j = 1, . . . , p. Obviously,

p∑
j=1

a
q

j cj a
m
j −→m→∞ 0 for q = 0, 1, . . . , p − 1.

This implies 


1 1 . . . 1
a1 a2 . . . ap

. . . . . . . . .

a
p−1
1 a

p−2
2 . . . a

p−1
p







c1a
m
1

c2a
m
2

. . .

cpam
p


 −→ 0

and we deduce that
(
c1a

m
1 , . . . , cpam

p

) −→ 0 which is a contradiction. Thus there exists a
sequence mν ↗ ∞ such that

p∑
j=1

cja
mν

j −→ β �= 0 as mν → ∞

and this completes the proof. �

Finally, we may establish a trace formula for the operator

g(U(T )) = U((m − 2k)T )

∞∑
j=0

bjU(jT ),

where the series h(z) = ∑∞
j=0 bj z

j has a radius of convergence R0 > ‖U(T )‖ and m ∈ N is
chosen so that Z((m − 2k)T ) is a trace class. First note that∥∥∥∥∥∥Z((m − 2k)T )

p+q∑
j=p

bjZ(jT )

∥∥∥∥∥∥
tr

� ‖Z((m − 2k)T )‖tr

p+q∑
j=p

|bj |‖Z(T )‖j � ε

for p, q � N(ε). Since the space of trace class operators is complete in trace norm, we deduce
that g(Z(T )) is trace class and this yields

tr


Z((m − 2k)T )

N∑
j=0

bjZ(jT )


 −→ tr(g(Z(T )) as N → ∞.

Next, the operator

(U(kT ) − U0(kT ))U(mT − 2kT )

N∑
j=0

bjU(jT )(U(kT ) − U0(kT ))

converges in the operator norm to (U(kT ) − U0(kT ))g(U(T ))(U(kT ) − U0(kT )) and

tr


(U(kT ) − U0(kT ))U(mT − 2kT )

N∑
j=0

bjU(jT )(U(kT ) − U0(kT ))


 −→ tr g(Z(T )).
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Applying the result of Gohberg and Krein (see chapter 6 in [9]), we obtain the following

Theorem 3. Let g(z) = zm−2kh(z) = zm−2k
∑∞

j=0 bj z
j be a function such that the series∑∞

j=0 bj z
j has in C a radius of convergence R0 > ‖U(T )‖ and let m, k be chosen as in

theorem 1. Then

tr((U(kT ) − U0(kT ))g(U(T ))(U(kT ) − U0(kT ))) =
∑

zj ∈Res P

g(zj ).

5. Example

In this section we construct a potential q(t, x) such that Z(T ) = 0 which implies that we have
no resonances z ∈ Res P \{0} . Assume that T = t1 + t0, t1 > 0, t0 > 0. We choose a potential
q(t, x) �= 0 satisfying the assumptions (H1), (H2) such that

q(t, x) = 0 for 0 < t0 � t � T , ∀x. (5.1)

Moreover, the support of q(t, x) with respect to x is independent of t0, t1. We obtain

U(T , 0) = U(t1 + t0, 0) = U(T , t0)U(t0, 0) = U0(t1)U(t0, 0).

Here we have used the fact that (5.1) implies U(T , t0) = U0(T − t0) = U0(t1). We fix the
projectors P+, P−, independently of t1, so that P±Q(s) = Q(s). Next we choose the time t1
large enough so that

P+U0(t1)P− = 0.

This implies

Z(T ) = P+U(T , 0)P− = P+U0(t1)P−U(t0, 0)P− = 0,

since (I − P−)U(t0, 0)P− = 0.
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[10] Martinez A 2002 Resonance free domains for non-analytic potentials Ann. H Poincaré 4 739–56
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[15] Sjöstrand J and Zworski M 1995 Lower bounds on the number of the scattering poles II J. Funct. Anal. 123

135–72



Resonances for time-periodic perturbations 9449
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