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Abstract

For time-periodic perturbations of the wave equation in R, x R’ given by a
potential g(¢, x), we obtain an upper bound of the number of the resonances
{z; € C:|zj| = 6 > 0}. We establish for m € N large enough a trace formula
relating the iterations of the monodromy operator U (mT, 0), T > 0, and the
sum ) ; 2 of all resonances counted with their multiplicities.

PACS numbers: 02.30.Sa, 02.30.Jr, 03.65.Nk
Mathematics Subject Classification: 35P25, 35B34

1. Introduction
The purpose of this paper is to study the resonances of the wave equation with time-dependent
potentials. Consider the Cauchy problem
8}u—Au+q(r,x)u:O, (r,x) e R x R",
u(s, x) = fo(x), ui(s,x)= fi(x), x e R",
where the potential ¢ (¢, x) € C °°(R, X R’;), n > 3, n odd, satisfies the conditions:

(Hy) there exists R > O such that g(t,x) =0 for |[x| > R, VteR,
(H)) q+T,x)=q(t,x), VY, x)eR"™ withT > 0.

(1.1

The solution of (1.1) is given by the propagator

U(f,S) : HO > (fOs fl) — U(t,s)(fo, fl) = (u(t,x),ut(t,x)) € HOv

where H, is the energy space Hy = Hp(R") ® L*(R") and Hp(R") is the closure of C(R™)
with respect to the norm

1/2
I flla, = (/Ifolzdx> )
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We refer to chapter V, [13], for the properties of U (¢, s) and throughout the paper we will use
freely the notation of [13].

Let Uy(t) = e"“0 be the unitary group in Hy related to the Cauchy problem (1.1) with
g = 0 and let P/ (resp. P”) denote the orthogonal projection on the orthogonal complement
of the spaces D} (resp. D”) introduced by Lax and Phillips (see [8, 13]) and defined by

DY ={f e Hy:Uyt)f =0for|x| < £t +p, £t >0}, 0 > R.
To define the resonances, we will use the operator
Z°(T) = PPU(T,0)P’.

For non-trapping perturbations the spectrum of Z”(7T) is formed by eigenvalues with finite
multiplicity and for m € N large enough the operator Z”(mT) is compact (see [1, 5, 13]).
Moreover, the eigenvalues and their multiplicity are independent of p > R (see [5, 13]). Let
P denote the operator related to the problem (1.1). We define the resonances following the
approach of Lax—Phillips [8] for stationary perturbations and that of Cooper—Strauss [5] for
time-periodic ones.

Definition 1. We say that z € C\{0} is a resonance for P if z € oy ZP(T).

Notice that e is an eigenvalue of Z°(T) if and only if there exists an outgoing solution
u(t, x) of the problem (1.1) with non-vanishing initial data such that e T y(t, x) is periodic
with period T. We refer to [13] for the definition of an outgoing solution (see also [5]) as
well as for the proof of the above equivalence. The second definition presents a more precise
description of the existence of outgoing modes with complex frequencies known in the physical
literature.

We denote by Res P the set of resonances of P. In the following we write Z(T), Py
instead of Z*(T), PY if the dependence on p is not important and we set

ur) =u(t,0), Zy(T) = P.U(T) P-.
In section 3 we obtain an upper bound of the number of the resonances
Ns =#{z€ResP :|z] =28} <C.5°¢, 0<e<1/2

which generalizes the known results for time-independent perturbations (see [11, 21, 14, 19]
and the papers cited there). To the best of our knowledge this is the first upper bound for N for
time-periodic perturbations. Next, using the bound of the resonances, we obtain a trace formula
involving the resonances. More precisely, given a function g(z) = z"h(z), holomorphic in a
disk containing the resonances, we establish a trace formula involving g(U (7)) and the series

Y e

zj€Res P

in the spirit of trace formulae obtained for stationary perturbations in [2, 11, 15, 22, 16] (see
section 4). In particular, for 2(z) = 1 we have the following

Theorem 1. Let x € C5°(B(0, r1); [0, 1]) be such that x =1 for |x| < R+ T and let
x(U(T) = Uo(T)) = (U(T) = Up(T))x = U(T) — Up(T). (1.2)
Let the projectors Py and the number k € N be fixed so that
PU(JT)P- =0, j >k, Piy = xPs=x. (1.3)
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Then for m > 2k large enough we have

tr((UKT) — Ug(kT)U (T — 2kT)(U(KT) — Up(kT))) = Y 2, (1.4)

zj€Res P

where the summation is over all resonances counted with their multiplicities.

Remarks.

(1) The equality (1.2) follows from the finite speed of propagation and the representation

T
U(T) = Uo(T) —/ Uo(T —5)Q(s)U (s, 0) ds,
0

0 0
0(s) = (q(s’x) 0) :

(2) It is clear that we can choose ¥ € C§°(R") with the property ¥ = 1 for |x| < r; + kT so
that

where

UKT) = UpkT)(1 =) =0
which is a consequence of
xUo(jT)(1 — ) =0, i=0, 1,...,k—1

(see equality (4.1)). Thus in the trace formula (1.4) on the right and on the left of
U(mT — 2kT) we may put the cut-off operator W = (U(kT) — Uy(kT))y acting as a
multiplication operator.

Corollary 1. Under the assumptions of theorem I the existence of a sequence m, € N,
m, /' oo, such that

[tr((U (kT) — Uo(kT))U (m,,T)(U (kT) — Uy(kT)))| —> o0 asm, /1 00
is equivalent to

ResPN{zeC:|z| > 1} # 0.

The above result says that the existence of resonances z;,|z;| > 1, associated with
solutions whose local energy blows up is connected to the behaviour as m — oo of the trace
of a cut-off iteration WU (mT)W. It is clear that we can choose b > 0 so that the projectors
P! satisfy PYW = W P? = W. Then we obtain the property

ResPN{zeC:|z| > 1} # 0 < im0 |tr(Z°(mT))| = +00.

The result of corollary 1 seems quite natural for time-periodic perturbations. For example, the
existence of intervals of instability for the Hill equation

V') + p®)y(®) +ay(t) =0 (1.5
with time-periodic p(¢) and A € R is determined by the trace

tr M (%) = yi(T, 2) +y5(T, 1)
of the Wronskian M (1) given by

¥ ¥(0)
(y/(T)) =M} (y'<0)> ‘
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Here yi(¢t,1) (resp.y»(¢, 1)) is the solution of (1.5) with y;(0,A) = 1,y;(0,1) = 0
(resp. y2(0,2) = 0,y5(0,2) = 1). The intervals of instability are described by the set
{A :|tr M(X)| > 2} (see, for instance, [7]). Moreover, if X lies in an interval of instability,
there exists an eigenvalue @ (Ag), |(t(ro)| > 1, of M (Ao), and we have

lim |tr M™ (Xg)| = oo.

m— 00
This phenomenon appears for the so-called parametric resonances [6] and if A = l’;—z with
suitable / € N there exist unbounded solutions.

For stationary perturbations, given by a potential V (x), we have always resonances
and some lower bounds for the function counting the number of the resonances have been
established (see [4, 3] and the references cited there). In contrast to the stationary case,
for time-periodic perturbations, it is possible to construct a potential ¢ (¢, x) such that the
corresponding operator P has no resonances z # 0. In section 5 we treat this problem.

2. Meromorphic continuation of the resolvent (U (T) — z)~!

In the following H will denote the space Hy. Given a resonance zo € Res P, consider the
projection

1
Tz == [ (z— Z(T)) 'dz,
271 Yo

where yo={z€ C:z=17zp+¢ e 0< ¢ <2r}and e > Ois sufficiently small. The space
7.,z (H) has a finite dimension, independent of p, and we define the multiplicity of zg as

m(zo) = rank 7, 7z (H).

Let Cy > 0 be a constant such that ||U (T)|| < Cy and let the cut-off function x, the projectors
P, and the integer k € N be fixed as in theorem 1.

Introduce a number ag > r; + kT and let H .4, be the space of the elements of H which
vanish for [x| > R + ag. Next define the space Hj,. as the space of functions u for which
Yu € H for each ¢ € C5°(R") equal to 1 in a neighbourhood of B(0, R + ap). Then we have
the following

Proposition 1. The operator (U(T) — 2)™' : Hriaqy, —> Hioe admits a meromorphic
continuation from |z| > Cy to C. The poles of this continuation coincide with the resonances
Res P and the geometric multiplicities are the same. Moreover, for every zo € Res P we have

nZo,Z(H) = nzo,Z(HR+a()) - 7-’:Z().,U(,}-lle+tl())7 (21)

where

i

1
T, U = 2—/ (z—=UM) " dz : Hrray —> Hioe-
Yo

Remark. The above result is similar to proposition 3.6 in [14], where the resonances for
compactly supported perturbations are defined by the method of complex scaling.

Proof. For |z] > Cy we have x(Z(T) — 2)"'x = x(U(T) — z)~'x and the poles of
x(U(T) — )7} x are included in the set Res P. To prove the inverse, note that

W(T) = Zo(T) — Z(T) = P (Uo(T) = U(T)) P— = x(Uo(T) = U(T)x = xV(T)x,
(2.2)
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where V(T) = Uy(T) — U(T). Next, we have
(Z(T) =27 = (Z(T) = 27 (Zo(T) = Z(T)(Zo(T) =)' + (Zo(T) =)'
= (Zo(T) — )" (Zo(T) = Z(T)NZ(T) — 2)~(Zo(T) — Z(T))(Zo(T) — 2)~"
+(Zo(T) = 2™ (Zo(T) = Z(T)(Zo(T) = )~ + (Zo(T) =)'
= (Zo(T) =2~ x V(D) x WU(T) =)~ x V(T x (Zo(T) =)~
+(Zo(T) =)™ Y V(T X (Zo(T) =)~ + (Zo(T) =)™ (23)
The resolvent (Zo(T) — z)~! is holomorphic in C\{0} and (2.3) implies that the eigenvalues
of Z(T) are inside the poles of x (U(T) — z)~'x. Thus the resonances coincide with the
poles of the meromorphic continuation of x (U(T) — z)~'x and it follows immediately that

the geometric multiplicities are the same.
To establish (2.1), note that according to (2.3), we have

1
Tz =5— | (G- Z(T) 'xV(T)x(Zo(T) — 2)"" dz.
1 Yo

Given f € H, we write

No

XV(DX(Zo(T) =27 f =Y (2 =20 xfro+ Of((z — 20", zey
Jj=0

and we obtain for Ny > 1

1 ad 4
Tzl =5~ /VO(Z —Z(M) ™" (2 = 20) X f0 dz.

j=0
On the other hand, as in the paper of Sjostrand and Zworski [14], we get
(z = 20) = (Z(T) = 20)’
=@ = ZMlz =20 + (@ =20 2@ = Z(T) +--+ (2= Z(T)’ 1.
For j > 1 we replace (z — z9)’ by (Z(T) — z0)’ and we deduce

No

Tz f =m0z | Y _(Z(T) = 20) (xf1.0)

Jj=0
Next we exploit the equality

j—1

Z(T) = Zo(jT) = =Y ZoWT)(Zo(T) = Z(T) Z((j — v — DT).

v=0
Observing that Zo(vT) = 0 for v > k, we deduce
k—1
ZGT)x =Zo(GT)x = Y ZoWT)x V(T)x Z((j —v — DT)x.
v=0
This implies
Z(jT)x = P,®, VjeN,

where ® € C°(B(0,ry +kT); [0, 1]) is such that (1 — ®)Up(jT)x =0for0 < j <k —1.
Since

7TZ0’2P+q) = P.;JTZO‘ZCD = an,ZcD’
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we conclude that
nzo,Z(H) = nzg,Z(cDH) C an,Z(HR+a0)~
Finally, if P’ ® = ® we have
1
Tz,z(H) = 72,0 (PH) + %(1 - Pf)/ (z = U(T)) "' ®dz : Hiray — Hioc-
Yo

The term involving (1 — P{) is independent of the choice of P, provided P’® = & and it
vanishes on every compact set. This completes the proof. ]

3. Upper bound of the number of resonances

In this section, we give a upper bound of the number of resonances lying in the disc
{zeC:|z| = 6}, 3> 0.

We will prove the following

Theorem 2. Suppose the assumptions (Hi), (H,) are fulfilled. Then the number of the
resonances 7 € Res P, |z| > 1, is finite and for each ¢ > 0 there exists a constant C. > 0
such that for every 0 < § < 1 we have

#{zeResP:|z] =8} < C.5 . 3.1)

Remarks.

(1) For stationary potentials this result has been obtained by Melrose [11] (see the estimate
(44)).

(2) The above bound is natural for independent on time perturbations. Indeed, in this case,
Melrose [11], Zworski [21], Sjostrand and Zworski [14] and Vodev [19] have proved that

#ResPN{oc € C: o] <r} < Cr". 3.2)

Moreover, if P is non-trapping, Vainberg [17] in the classical case and Martinez [10] in
the semi-classical framework have shown that for each N € N we have
#ResPN{oc € C: |Imo| < NIn(|o|)} < oo. 3.3)
This implies
#ResPN{oc € C: |Imo| <r} <#ResPN{o € C: NIn(Jo|) < |Imo| <r}+Cy
<#ResPN{o e C:lo| <eM}+Cy < Chye™V. (3.4)
ioT n

, we obtain the estimate (3.1) with € = 2.

Now, fixing 7 > 0 and setting z = ¢ ™

Proof. We will exploit the method developed by Melrose [11, 12] for perturbations independent
of time (see also Zworski [21] and Vodev [19]). To prove the theorem, it is sufficient to show
that there exists N € N such that for each ¢ > 0, the eigenvalues of the operator Z(NT)
satisfy for all 0 < § < 1 the estimate

#MzeC:ze0p(Z(NT)), |z =8} < C5*. (3.5)

Given a compact operator S, we denote by 1 ;(S), j = 1,2, ..., the characteristic values
of S which form a non-increasing sequence of the eigenvalues of (5*S)!/? counted with their
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multiplicity. Let x € Ci°(R") and k € N be fixed as in theorem 1 so that Zo(kT) = 0. For
M € N, we have
Z(2k+M)T) = Z(kT)Z(MT)Z(kT)

= (Z(kT) = Zo(kT) Z(MT)(Z(kT) — Zo(kT))

= P.(UKT) — UpkT))UMT)(U (KT) — Uy(kT)) P_

= P.(UKT) = Ug(kT)) x UMT) x (U (kT) — Uo(kT)) P. (3.6)

Since the perturbation of P is given by a potential, the results for the propagation of

singularities imply that the operator x U(MT)y is regularizing for M € N large enough (see
[5,1, 13, 18]). Let Q CC R”" be an open hypercube, with suppy C €2, and let Ag be the

Laplacian in € with Dirichlet boundary condition. It is well known (see for instance, [21, 19])
that for all m € N, there exists C,, > 0 such that

1 =A8g)™) < Cpj ", VjeN
Consequently, using (3.6) and the inequalities
wi(AB) < w;j(A)|BI, wi(AB) < w;j(B) Al
we get, form € N,
wi(Z(2k + M)T)) < Cuj(xUMT)x)
S Cupi((d —A)™( — A)" xUMT)x)
SCpi( = A) ™I = A)" XUMT)x|
<Cpjmn (3.7)

with a new constant C,, > 0.
We choose N = 2k + M, 2m > n and we order the eigenvalues

YU R Y

of Z(NT) counted with their multiplicities by decreasing modulus. Then
P
Apl? < H 1‘[ (Z(NT)) < (COP(ph7*,

where k € N can be taken as large as we wish. Thus with a constant C;, we get

Myl < Celph) ™7 < Cpp*

Now for the eigenvalues A1, ..., A, with modulus greater than § > 0 we deduce
p< c;ga*%
and taking k = -, we complete the proof. ]

4. Trace formula

In this section we prove theorem 1. Recall that x € C;°(R"), the projectors Py and k € N are
fixed so that (1.2) and (1.3) hold. First notice that
k-1
UT) — Uy(kT) = Z ugnWw(r) —Uy(THUo(k — j — DT)
j=0
=P_(UKT)—Uy(kT)) = (UkT) — Uy(kT)) P,. 4.1
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The second and the third equalities follow from the fact that
(I—=PHU(JT)x = xUp(jT)I — P;) =0, j=0,...,k—1.
The operator
P.UmT —2kT)P-
is trace class for m sufficiently large and the cyclicity of the trace implies
tr((U(kT) — Up(kT))U (T —2kT)(U (kT) — Uy(kT)))
=tr(P_(UT) — Uy(kT))P.U(mT —2kT)P_(U(kT) — Uo(kT)) P,)
=tr(Py(UKT) — Up(kT))P_P,U(mT —2kT)P_P,(UkT) — Up(kT))P-)
=tr(PL,UKT)P_P,UmT —2kT)P_P.(U(kT)P-)
=tr(P,UmT)P-) = tr(Z(mT)).

Applying Lidsii theorem for the trace of Z(mT), we complete the proof since by theorem 2
we have

oo 00 C m—e
IEARD DS |ZT|<CGZ<;> <Cn,  0<e<1/2, m>2.
7

p=1 L<\Z‘,’|<% p=1

p+l

It is clear that corollary 1 follows from the following

Lemma 1. Let

Amzz:z;”, Bm=ZZT, m e N.

lz;1<1 lzj1>1
Then
|An] < Co, Vm > 1+¢ > 1.

Moreover, if {z € Res P : |z| > 1} # 0, then there exists a sequence m,, /' 0o, m, € N, such
that

lim |B,,

m,— 00

= Q.

Proof. Let m — € > 1, € > 0. Using the estimate
#{z; €eResP:|z;] 28} < Cb7°,
we obtain

|A |<i Z lz;|" < C i<l>m< ! )€<C’
Zj — — .
m \k=1ﬁ<|m<% s Ek:l k k+1 S
To deal with the sum B,,, introduce
n =max{|z;| : z; € Res P, |z;| > 1}.
Since we have a finite number of resonances z; with [z;| > 1, let
Zj =pe¥, j=1,....p, o # ¢; (mod2m), v #j.
It is sufficient to show that for a suitable sequence m, ' co we have
P .
m{iinoo ch e =€) > 0,
j=1

where ¢; € N is the multiplicity of the resonance z;, j =1, ..., p.
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Puta; = ei“’f,j =1,..., p and assume that

P
lim E cja? =0
m—0oQ J

j=1

for some integers c; € N, j = 1,..., p. Obviously,

P
Za?cja;” —> oo 0 forq =0,1,...,p— 1.
Jj=1

This implies
1 1 . 1 cial'
a, a ... a cral
p 2 0
p—1 p—2 p—1 m
a a, c.oap Cpa,
and we deduce that (cm{”, AU cpa[’f) —> 0 which is a contradiction. Thus there exists a

sequence m, ' oo such that
P
m,
E cja;" — B#0 as m, — 00
j=1

and this completes the proof. ]

Finally, we may establish a trace formula for the operator

gU(T) = U((m —2k)T) Y b;U(T),
j=0

where the series h(z) = Z?O:Q b;z’ has a radius of convergence Ry > ||U(T)|| and m € N is
chosen so that Z((m — 2k)T) is a trace class. First note that

Ptq Ptq
Z(m = 20T) Y b, ZGT)| < 1Z(m = 20T) e Y Ib; 1 Z(T)| < €
j=p i j=p

for p, g > N (e€). Since the space of trace class operators is complete in trace norm, we deduce
that g(Z(T)) is trace class and this yields

N
tr| Z((m —2k)T) ijZ(jT) — tr(g(Z(T)) as N — oo.
Jj=0

Next, the operator

N
(UKT) — Ug(kT))U (T — 2kT) ijU(jT)(U(kT) — Uy (kT))
Jj=0

converges in the operator norm to (U (kT) — Uy(kT))g(U(T))(U (kT) — Up(kT)) and

N
tr | (UKT) — Ug(kT))U (T — 2kT) ijU(jT)(U(kT) —Uy(kT)) | — trg(Z(T)).
j=0
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Applying the result of Gohberg and Krein (see chapter 6 in [9]), we obtain the following

Theorem 3. Let g(z) = 2" *h(z) = 7" * Z;OZO 2/ be a function such that the series
Z;‘;o b‘,-zj has in C a radius of convergence Ry > ||U(T)| and let m,k be chosen as in
theorem 1. Then

tr((UT) — Uo(kT)gUT)UKT) — Up(kT))) = Z 8(z)).

z,-eRes P

5. Example

In this section we construct a potential ¢ (¢, x) such that Z(7T) = 0 which implies that we have
no resonances z € Res P\{0} . Assume that T = t; +1y, t; > 0, to > 0. We choose a potential
q(t, x) # 0 satisfying the assumptions (H;), (H;) such that

qt,x)=0 forO<r<t<T, Vx. 5.1
Moreover, the support of ¢ (¢, x) with respect to x is independent of 7y, ;. We obtain
U(T,0)=U(t +19,0) = U(T, 1)U (10, 0) = Up(t:1) U (29, 0).

Here we have used the fact that (5.1) implies U (T, t9) = Uo(T — ty) = Uy(t;). We fix the
projectors P, P_, independently of #;, so that P, Q(s) = Q(s). Next we choose the time 7,
large enough so that

P Up(t))P- = 0.
This implies

Z(T)=P.UT,0)P_ = P.Uy(t1) P_U(tp, 0) P_ =0,
since (I — P_)U (ty, 0)P_ = 0.
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